Skip to Main Content Skip to article
Sangia Media
Agrikan: Jurnal Agribisnis Perikanan

Research article
Peramalan penjualan roti kenari arjuns bakery di Kota Ternate Provinsi Maluku Utara

Under a Creative Commons license
Open Access

Abstract

Pada penelitian ini bertujuan untuk mempelajari  Pola penjualan roti kenari yang di produksi oleh perusahaan Arjuns Bakery dan mengetahui peramalan roti kenari terbaik dengan menggunakan time serial untuk 3 bualan mendatang. Metode yang digunakan adalah metode time serial dengan menggunakan simple Average, Moving Average dan Simple Eksponensial Smoothing.  Hasil penelitian menunjukkan bahawa pola penjualan roti kenari bersifat stasioner atau horisontal, dimana pergerakan data penjualan berada di sekitar rata-rata penjualan roti selama satu tahun sembilan bulan.  Nilai peramalan yang diperoleh dengan menggunakan metode time serial adalah Simple Average  dengan nilai peramalan 8060 dengan SE 572.84,  Moving Average 7713 dengan nilai SE 558.72 yang dianggap baik untuk meramalkan penjualan roti untuk tiga bulan mendatang adalah metode Simple Eksponensial Smoothing  dengan nilai peramalan penjualan roti kenari sebesar  7759 buah, dengan nilai  SE   sebesar  555.03.

Keywords

Peramalan, Penjualan, Time Serial

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Funding Information

UMMU

Declarations

License and permission

Creative Commons LicenseThis article is distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher's Note

Sangia Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ethical approval acknowledgements

No ethical approval required for this article.

Competing interest

No conflict of interest has been declared by the authors.

Supplementary files

Data sharing not applicable to this article as no datasets were generated or analysed during the current study, and/or contains supplementary material, which is available to authorized users.