Pada penelitian ini bertujuan untuk mempelajari Pola penjualan roti kenari yang di produksi oleh perusahaan Arjuns Bakery dan mengetahui peramalan roti kenari terbaik dengan menggunakan time serial untuk 3 bualan mendatang. Metode yang digunakan adalah metode time serial dengan menggunakan simple Average, Moving Average dan Simple Eksponensial Smoothing. Hasil penelitian menunjukkan bahawa pola penjualan roti kenari bersifat stasioner atau horisontal, dimana pergerakan data penjualan berada di sekitar rata-rata penjualan roti selama satu tahun sembilan bulan. Nilai peramalan yang diperoleh dengan menggunakan metode time serial adalah Simple Average dengan nilai peramalan 8060 dengan SE 572.84, Moving Average 7713 dengan nilai SE 558.72 yang dianggap baik untuk meramalkan penjualan roti untuk tiga bulan mendatang adalah metode Simple Eksponensial Smoothing dengan nilai peramalan penjualan roti kenari sebesar 7759 buah, dengan nilai SE sebesar 555.03.
Subscribe to Journal
Get full journal access for 1 year
185,98 €
only 3,65 € per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
UMMU
This article is distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
Sangia Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
No ethical approval required for this article.
No conflict of interest has been declared by the authors.
Data sharing not applicable to this article as no datasets were generated or analysed during the current study, and/or contains supplementary material, which is available to authorized users.