Full Length Article
Application of NDVI Transformation on Sentinel 2A Imagery for mapping mangrove conditions in Makassar City

Under a Creative Commons license
Open Access

Highlights

Generate: Datamuse by AXIOS AI.

Abstract

Mangrove ecosystems consist of tropical plants that have adapted to the salinity, tidal fluctuations, and loose soil condition. Identification of mangrove ecosystems can be carried out by direct survey methods or by utilizing remote sensing technology. This study aims to map the area, percent cover, and density of mangroves in Makassar City using Sentinel 2A Imagery. The method used is the NDVI transformation, followed by Unsupervised-ISODATA classification, ground check with the 10 x 10-meter plotting method, and hemispherical photography. The results showed that the existence of mangroves in Makassar City was still found in the Tallo and Biringkanaya districts, with 68.81 ha of mangrove ecosystem cover area in the range of 84.36 - 91.89% (dense category). Likewise, the vegetation index based on NDVI analysis ranged from 0.73 - 0.81 (dense category), and the species density was in the range of 2700 - 6400 trees/Ha (dense category). Sentinel-2A imagery transformed with NDVI can be used to track mangrove areas and their density. The wide distribution of mangrove ecosystems in Makassar is relatively small but has good conditions.

Keywords

Hemispherical photography
Remote Sensing
Vegetation Index
Makassar

Introduction

Not found Introduction from fulltext PDF for this article.

Section snippets

Material and Methods

Not found Material and Methods from fulltext PDF for this article.

Results

Not found Results from fulltext PDF for this article.

Discussion

Not found Discussion from fulltext PDF for this article.

Conclusions

Not found Conclusions from fulltext PDF for this article.

Acknowledgment

Not found Acknowledgment from fulltext PDF for this article.

Declarations

License and permission

Creative Commons LicenseThis article is distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher's Note

Sangia Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CRediT authorship contribution statement

No CRediT authorship contribution statement required for this article.

Ethical approval acknowledgements

No ethical approval required for this article.

Competing interest

No conflict of interest has been declared by the authors.

Supplementary files

Data sharing not applicable to this article as no datasets were generated or analysed during the current study, and/or contains supplementary material, which is available to authorized users.

References (40)

Akbar, M. R., Arisanto, P. A. A., Sukirno, B. A., Merdeka, P. H., Priadhi, M. M., & Zallesa, S. (2020). Mangrove vegetation health index analysis by implementing NDVI (normalized difference vegetation index) classification method on sentinel-2 image data case study: Segara Anakan, Kabupaten Cilacap. IOP Conference Series: Earth and Environmental Science, 584(1), 012069. doi:10.1088/1755-1315/584/1/012069

Beddu S. (2011). Bantaran sungai sebagai konservasi lansekap alami; Studi kasus: bantaran Sung ai Tallo Makassar. Jurnal Teknik Lingkungan 5:1-7.

Carugati, L., Gatto, B., Rastelli, E., Lo Martire, M., Coral, C., Greco, S., & Danovaro, R. (2018). Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Scientific Reports, 8(1), 13298. doi:10.1038/s41598-018-31683-0

Chavez, P., Berlin, G. and Sowers, L. (1982). Statistical Method for Selecting Landsat MSS Ratios. Journal of Applied Photographic Engineering, 8, 23-30

Danoedoro, P., (2012). Pengantar Penginderaan Jauh Digital. Penerbit Andi. Yogyakarta

Departemen Kehutanan, (2005). Pedoman Inventarisasai dan Identifikasi Lahan Kritis Mangrove. Direktorat Jenderal Rehabilitasi Lahan dan Perhutanan Sosial. Jakarta.

de Leon, R. O. D., & White, A. T. (1999). Mangrove Rehabilitation in the Philippines. In W. Streever (Ed.), An International Perspective on Wetland Rehabilitation (pp. 37-42). Dordrecht: Springer Netherlands.

Dewanti, R, T. Maulana, S. Budiman, F. Zinuddin & Munyati. (1999). Kondisi Hutan Mangrove di Kalimantan Timur, Sumatera, Jawa, Bali, dan Maluku. Majalah LAPAN, Edisi Penginderaan Jauh, (91) : 29-43.

Dharmawan I.W., & Pramudji. E., (2014) .Panduan Monitoring Status Ekosistem Mangrove. PT. Sarana Komunikasi Utama. vii + 35hlm

Faizal, A., & Amran, M. A. (2005). Model transformasi indeks vegetasi yang efektif untuk prediksi kerapatan mangrove rhizopora mukronata. Dalam Proceeding Pertemuan Ilmiah Tahunan MAPIN XIV, 14-15 September. Surabaya: Institut Teknologi Sepuluh Nopember

Fang, H., & Liang, S. (2014). Leaf Area Index Models☆ Reference Module in Earth Systems and Environmental Sciences: Elsevier.

Gessesse, A. A., & Melesse, A. M. (2019). Chapter 8 - Temporal relationships between time series CHIRPS-rainfall estimation and eMODIS-NDVI satellite images in Amhara Region, Ethiopia. In A. M. Melesse, W. Abtew, & G. Senay (Eds.), Extreme Hydrology and Climate Variability (pp. 81-92): Elsevier

Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove Ecosystem Mapping Using Sentinel-1 and Sentinel-2 Satellite Images and Random Forest Algorithm in Google Earth Engine. Remote Sensing, 13(13), 2565.

Gilani, H., Naz, H. I., Arshad, M., Nazim, K., Akram, U., Abrar, A., & Asif, M. (2021). Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuarine, Coastal and Shelf Science, 249, 107128. doi: https://doi.org/10.1016/j.ecss.2020.107128

Hu, L., Xu, N., Liang, J., Li, Z., Chen, L., & Zhao, F. (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing, 12(19), 3120.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213. doi:https://doi.org/10.1016/S0034-4257(02)00096-2

Jia, M., Wang, Z., Wang, C., Mao, D., & Zhang, Y. (2019). A New Vegetation Index to Detect Periodically Submerged Mangrove Forest Using Single-Tide Sentinel-2 Imagery. Remote Sensing, 11(17), 2043.

Jimenez, R. B., Lane, K. J., Hutyra, L. R., & Fabian, M. P. (2022). Spatial resolution of Normalized Difference Vegetation Index and greenness exposure misclassification in an urban cohort. Journal of exposure science & environmental epidemiology, 32(2), 213–222. https://doi.org/10.1038/s41370-022-00409-w

Kementerian Negara Lingkungan Hidup, (2004). KepMen LH No. 201 Tentang Kriteria Baku dan Pedoman Penentuan Kerusakan Mangrove. Salinan. 62 Deputi MENLH Bidang Kebijakan dan Kelembagaan Lingkungan Hidup. Jakarta.

Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote Sensing of Mangrove Ecosystems: A Review. Remote Sensing, 3(5), 878-928.

Lee, C. K. F., Duncan, C., Nicholson, E., Fatoyinbo, T. E., Lagomasino, D., Thomas, N., . . . Murray, N. J. (2021). Mapping the Extent of Mangrove Ecosystem Degradation by Integrating an Ecological Conceptual Model with Satellite Data. Remote Sensing, 13(11), 2047.

Li, X., Feng, R., Guan, X., Shen, H., & Zhang, L. (2019). Remote sensing image mosaicking: Achievements and challenges. IEEE Geoscience and Remote Sensing Magazine, 7(4), 8-22

Lugo, A. E., & Snedaker, S. C., (1974). The Ecology of Mangroves. Annual Review of Ecology and Systematics, 5(1), 39–64. doi:10.1146/annurev.es.05.110174.000351

Manoppo A.K.S., Anggraini N., dan Marini Y. (2015). Identifikasi Mangrove dengan Metode Optimum Index Factor (OIF) pada Data SPOT 6 dan Landsat 8 di Pulau Lingayan. Prosiding Pertemuan Ilmiah Tahunan XX 2015. Lembaga Penerbangan dan Antariksa Nasional (LAPAN).

Massa, Y. M (2021), Berebut Lahan Di Pesisir Makassar, Ruang Mangrove Butuh Diperjuangkan. Blue Forest-Yayasan Hutan Biru (publish 2021, April 9) website : https://blue-forests.org/id/ruang-berita/kabar-dari-kami/berebut-lahan-di-pesisir-makassar-ruang-mangrove-butuh-diperjuangkan

Mondal, P., Liu, X., Fatoyinbo, T. E., & Lagomasino, D. (2019). Evaluating Combinations of Sentinel-2 Data and Machine-Learning Algorithms for Mangrove Mapping in West Africa. Remote Sensing, 11(24), 2928.

Nunoo, F. and Agyekumhene, A. (2022) Mangrove Degradation and Management Practices along the Coast of Ghana. Agricultural Sciences, 13, 1057-1079. doi: 10.4236/as.2022.1310065.

Purnobasuki dan Suzuki. (2005). Tinjauan Perspektif Hutan Mangrove. PT Airlangga University Press. Surabaya.

Robertson, A. I., (1991), Plant-animal interactions and the structure and function of mangrove forest ecosystems. Australian Journal of Ecology, 16: 433-443. https://doi.org/10.1111/j.1442-9993.1991.tb01073.x

Rouse, J.W., Haas, R.H., Schell, J.A. and Deering, D.W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). Proceedings of 3rd Earth Resources Technology Satellite Symposium, Greenbelt, 10-14 December, SP-351, 309-317

.

Sari, K. I., Budimawan, & Selamat, M. B. (2023). Sustainability Study of Mangrove Area Management in the North Coast of Makassar City (Case Study: Lantebung and Untia). IOP Conference Series: Earth and Environmental Science, 1134(1), 012050. doi:10.1088/1755-1315/1134/1/012050

Setyawan, A.D., Winarno, K.,. Purnama, P.C. (2003). Review: ekosistem mangrove di Jawa: 1. Kondisi terkini. Biodiversitas 4 (2): 130-142.

Singgalen Y. A., GudiatoC., PrasetyoS. Y. J., & FibrianiC. (2021). Mangrove Monitoring Using Normalized Difference Vegetation Index (NDVI): Case Study In North Halmahera, Indonesia. Jurnal Ilmu Dan Teknologi Kelautan Tropis, 13(2), 219-239. https://doi.org/10.29244/jitkt.v13i2.34771

Srikant, S., Lum,S.K.Y., & Zhong, C., (2016). Mangrove root: adaptations and ecological importance. Trees: 30(2), 451–465. doi: https://doi.org/10.1007/s00468-015-1233-0

Tran, T. V., Reef, R., & Zhu, X. (2022). A Review of Spectral Indices for Mangrove Remote Sensing. Remote Sensing, 14(19), 4868.

Xue, J., & Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017, 1353691. doi:10.1155/2017/1353691

Yando, E. S., Sloey, T. M., Dahdouh-Guebas, F., Rogers, K., Abuchahla, G. M. O., Cannicci, S., . . . Friess, D. A. (2021). Conceptualizing ecosystem degradation using mangrove forests as a model system. Biological Conservation, 263, 109355. doi:https://doi.org/10.1016/j.biocon.2021.109355.

Yasin, M. Y., Mohd Noor, N., Mohd Yusoff, M., Abdullah, J., & Noor, N. M. (2021). SPOT Imagery Observation on Mangrove Changes Using NDVI Density Analysis: The Case of Sepang Besar River, Malaysia. The Arab World Geographer, 23(2-3), 217-228. doi:10.5555/1480-6800.23.2.217

There are more references available in the full text version of this article.

Bibliographic Information

Verify authenticity via CrossMark

Cite this article as:

Faizal, A., Mutmainna, N., Amran, M., Saru, A., Amri, K., & Nessa, M., 2023. Application of NDVI Transformation on Sentinel 2A Imagery for mapping mangrove conditions in Makassar City. Akuatikisle: Jurnal Akuakultur, Pesisir dan Pulau-Pulau Kecil 7(1): 59-66. https://doi.org/10.29239/j.akuatikisle.7.1.59-66
  • Submitted
    15 February 2023
  • Revised
    28 February 2023
  • Accepted
    4 March 2023
  • Published
    7 March 2023
  • Version of record
    29 May 2023
  • Issue date
    30 May 2023
  • Discipline(s)
    marine sciences

Keywords

AhmadFaizal, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

ahmad.faizal@unhas.ac.idorcidOrcid ProfilescholarGoogle Scholar Profile

NitaMutmainna, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

nitamutmainna32@gmail.com

Muh AnsharAmran, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

anshar_btg@yahoo.co.id

AmranSaru, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

amransaruprof@gmail.com

KhairulAmri, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

kamri.ikl@gmail.com

Muh NastsirNessa, Departmen Ilmu Kelautan, Universitas Hasanuddin, Jl.Perintis Kemerdekaan Km. 10, Makassar, Indonesia 90245, Indonesia.

akh_faizal@yahoo.co.id
View full text

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.