Sangia Media

Router Research

Volume 1, Issue 1, December 2019, Pages 1-6

Full Length Articles
Penerapan Data Mining untuk Identifikasi Penyakit Diabetes Melitus dengan Menggunakan Metode Klasifikasi

Under a Creative Commons license
Open Access

Highlights

Generate: Datamuse by AXIOS AI.

Abstract

Penyakit Diabetes Melitus (DM) dengan komplikasi merupakan penyebab tertinggi kematian ketiga di indonesia yang setiap tahun penderitanya semakin bertambah, penyakit ini dulunya di juluki penyakit orang kaya namun seiring bertambahnya waktu penyakit ini sudah diidap oleh masyarakat menengah dan miskin. Hal ini dikarenakan bukan lagi karena faktor genetic tapi pola hidup yang tidak teratur menjadi penyumbang pesatnya penyakit ini, berdasarkan data WHO 80% penderita DM dapat dicegah, Klasifikasi pada penelitian ini bertujuan untuk memudahkan perawat dan penderita mengenali tipe penyakit DM agar penanganan penyakit diabetes semakin mudah dilakukan. Untuk menghasilkan informasi baru maka digunakan perhitungan algoritma C.45 dan pengujian algoritma yang menggunakan aplikasi rapid miner akan semakin memperkuat keputusan. Pada pengujian penelitian ini menggunakan beberapa atribut klasifikasi yakni atribut Jenis Kelamin, berat badan,Usia, Perokok, kadar gula darah, dan Tipe penyakit diabetes. Semua atribut tersebut akan dijadikan acuan dalam penelusuran hasil sehingga perawat dan penderita dapat menjadikan acuan dalam perawatan diri pasien secara optimal.

Keywords

Data mining
Diabetes mellitus
Metode klasifikasi C.45

Introduction

Not found Introduction from fulltext PDF for this article.

Section snippets

Material and Methods

Not found Material and Methods from fulltext PDF for this article.

Results

Not found Results from fulltext PDF for this article.

Discussion

Not found Discussion from fulltext PDF for this article.

Conclusions

Not found Conclusions from fulltext PDF for this article.

Acknowledgment

Not found Acknowledgment from fulltext PDF for this article.

Funding Information

Program Studi Sistem Komputer Stimik Bina Bangsa Kendari

Declarations

License and permission

Creative Commons LicenseThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Publisher's Note

Sangia Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CRediT authorship contribution statement

No CRediT authorship contribution statement required for this article.

Ethical approval acknowledgements

No ethical approval required for this article.

Competing interest

No conflict of interest has been declared by the authors.

Supplementary files

Data sharing not applicable to this article as no datasets were generated or analysed during the current study, and/or contains supplementary material, which is available to authorized users.

References (1)

Anik andriani, sistem prediksi penyakit diabetes berbasis decision tree, Jurnal bianglala informatika, vol 1 no 1 september 2013.

Devi, M. R., & Shyla, J. M. (2016). Analysis of various data mining techniques to predict diabetes mellitus. International Journal of Applied Engineering Research, 11(1), 727-730.

Fernanda, J. W., & Otok, B. W. (2012). Boosting Neural Network dan Boosting Cart Pada Klasifikasi Diabetes Militus Tipe II. Jurnal Matematika, 2(2), 1693-1394.

Oktiandi nugroho, bagus adhi kusuma, zanuar rifai, tri astuti, uswatun khasanah, risky wahyudi, peranan data mining untuk mengidentifikasi penyakit diabetes mellitus dengan menggunakan algoritme ID3, ISBN: 978

Poonguzhali ,E., Kabilan,S., Kannan,S., & Sivagami , P. (2014). Diagnosis of Diabetes Mellitus Type2 using Neural Network. International Journal of Emerging Technology and Advanced Engineering, 4(2),939–942

Fahra, R. U., Widayati, N., & Sutawardana, J. H. (2017). Hubungan Peran Perawat Sebagai Edukator Dengan Perawatan Diri Pasien Diabetes Melitus Tipe 2 Di Poli Penyakit Dalam Rumah Sakit Bina Sehat Jember.

Fernanda, S. I., Ratnawati, D. E., & Adikara, P. P. (2017). Identifikasi Penyakit Diabetes Mellitus Menggunakan Metode Modified K-Nearest Neighbor (MKNN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.

Fernanda, S. I., Ratnawati, D. E., & Adikara, P. P. (2017). Identifikasi Penyakit Diabetes Mellitus Menggunakan Metode Modified K-Nearest Neighbor (MKNN). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer vol 1 no. 6

Smeltzer, S.C. & Bare, B.G.(Eds) 2002. Buku Ajar Keperawatan Medikal-Bedah Brunner & Suddarth. Ed. 8, Vol. 2. Jakarta: EGC

Sa’di, S., Maleki, A., Hashemi, R., Panbechi, Z., & Chalabi, K. (2015). Comparison of data mining algorithms in the diagnosis of type II diabetes. International Journal on Computational Science & Applications (IJCSA), 5(5), 1-12.

Vijayan, V., & Ravikumar, A. (2014). Study of data mining algorithms for prediction and diagnosis of diabetes mellitus. International journal of computer applications, 95(17), 12-16

There are more references available in the full text version of this article.

Bibliographic Information

Verify authenticity via CrossMark

Cite this article as:

Aris, F., & Benyamin, 2019. Penerapan Data Mining untuk Identifikasi Penyakit Diabetes Melitus dengan Menggunakan Metode Klasifikasi. Router Research 1(1): 1-6. https://doi.org/10.29239/j.router.2019.313
  • Submitted
    16 September 2019
  • Accepted
    16 September 2019
  • Published
    16 September 2019
  • Version of record
    18 September 2019
  • Issue date
    31 December 2019

Keywords

Faiz  Aris

FaizAris, Dosen Program Studi Sistem Komputer Stimik Bina Bangsa Kendari, Indonesia.

Benyamin  Benyamin

Benyamin, Dosen Program Studi Sistem Komputer Stimik Bina Bangsa Kendari, Indonesia.

Pemrosesan naskah dibawah tanggungjawab Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM), STIMIK Bina Bangsa Kendari. Edited by Darsilan, SE, M.Si (C). Full-text and the content of it is under responsibility of authors of the article.

Pemrosesan naskah dibawah tanggungjawab Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM), STIMIK Bina Bangsa Kendari. Edited by Darsilan, SE, M.Si (C). Full-text and the content of it is under responsibility of authors of the article.

View full text

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.